Plasma Membrane Mechanical Stress Activates TRPC5 Channels

نویسندگان

  • Bing Shen
  • Ching-On Wong
  • On-Chai Lau
  • Theodosia Woo
  • Suwen Bai
  • Yu Huang
  • Xiaoqiang Yao
چکیده

Mechanical forces exerted on cells impose stress on the plasma membrane. Cells sense this stress and elicit a mechanoelectric transduction cascade that initiates compensatory mechanisms. Mechanosensitive ion channels in the plasma membrane are responsible for transducing the mechanical signals to electrical signals. However, the mechanisms underlying channel activation in response to mechanical stress remain incompletely understood. Transient Receptor Potential (TRP) channels serve essential functions in several sensory modalities. These channels can also participate in mechanotransduction by either being autonomously sensitive to mechanical perturbation or by coupling to other mechanosensory components of the cell. Here, we investigated the response of a TRP family member, TRPC5, to mechanical stress. Hypoosmolarity triggers Ca2+ influx and cationic conductance through TRPC5. Importantly, for the first time we were able to record the stretch-activated TRPC5 current at single-channel level. The activation threshold for TRPC5 was found to be 240 mOsm for hypoosmotic stress and between -20 and -40 mmHg for pressure applied to membrane patch. In addition, we found that disruption of actin filaments suppresses TRPC5 response to hypoosmotic stress and patch pipette pressure, but does not prevent the activation of TRPC5 by stretch-independent mechanisms, indicating that actin cytoskeleton is an essential transduction component that confers mechanosensitivity to TRPC5. In summary, our findings establish that TRPC5 can be activated at the single-channel level when mechanical stress on the cell reaches a certain threshold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypoosmotic- and pressure-induced membrane stretch activate TRPC5 channels.

Transient receptor potential (TRP) channels mediate a wide array of sensory functions. We investigated the role of TRPC5, a poorly characterized channel widely expressed in the central and peripheral nervous system, as a potential osmosensory protein. Here we show that hypoosmotic stimulation activates TRPC5 channels resulting in a large calcium influx. The response to osmotically induced membr...

متن کامل

Nitric oxide activates TRP channels by cysteine S-nitrosylation.

Transient receptor potential (TRP) proteins form plasma-membrane cation channels that act as sensors for diverse cellular stimuli. Here, we report a novel activation mechanism mediated by cysteine S-nitrosylation in TRP channels. Recombinant TRPC1, TRPC4, TRPC5, TRPV1, TRPV3 and TRPV4 of the TRPC and TRPV families, which are commonly classified as receptor-activated channels and thermosensor ch...

متن کامل

TRPC5 Channel Sensitivities to Antioxidants and Hydroxylated Stilbenes*

Transient receptor potential canonical 5 (TRPC5) forms cationic channels that are polymodal sensors of factors including oxidized phospholipids, hydrogen peroxide, and reduced thioredoxin. The aim of this study was to expand knowledge of the chemical-sensing capabilities of TRPC5 by investigating dietary antioxidants. Human TRPC5 channels were expressed in HEK 293 cells and studied by patch cla...

متن کامل

Determinants of TRPV4 Activity following Selective Activation by Small Molecule Agonist GSK1016790A

TRPV4 (Transient Receptor Potential Vanilloid 4) channels are activated by a wide range of stimuli, including hypotonic stress, non-noxious heat and mechanical stress and some small molecule agonists (e.g. phorbol ester 4α-PDD). GSK1016790A (GSK101) is a recently discovered specific small molecule agonist of TRPV4. Its effects on physical determinants of TRPV4 activity were evaluated in HeLa ce...

متن کامل

Mol093229 514..521

Canonical transient receptor potential channel 5 (TRPC5) is a nonselective, Ca-permeable cation channel that belongs to the large family of transient receptor potential channels. It is predominantly found in the central nervous system with a high expression density in the hippocampus, the amygdala, and the frontal cortex. Several studies confirm that TRPC5 channels are implicated in the regulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015